TRACE CONSTITUENTS OF LIPPIA INTEGRIFOLIA

César A.N. Catalán,* Marina E.P. de Lampasona,

Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, S.M. de Tucumán, 4000 Argentina

CARLOS M. CERDA-GARCÍA-ROJAS, and PEDRO JOSEPH-NATHAN*

Departamento de Química del Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Apartado 14-740, México, D.F., 07000 México

ABSTRACT.—Three new sesquiterpenes, together with S-(+)-*trans*-nerolidol, were isolated from the essential oil of *Lippia integrifolia*. Their structures were elucidated by nmr spectroscopy as 2β , 4β , 9α -2,6,6,9-tetramethyltricyclo[$6.3.0.0^{2.4}$]undec-1(8)-ene-7,11-dione [1], 1β , 2α , 8β -2,6,10,10-tetramethylbicyclo[6.3.0]undec-5-en-2-ol (3α -hydroxy-6-asteriscene) [2], and 1α , 7β , 9α -1-hydroxy-3,6,6,9-tetramethylbicyclo[5.4.0]undec-3-en-8-one [3].

The aerial parts of the aromatic shrub Lippia integrifolia (Griseb.) Hieron (Verbenaceae) are used in the traditional medicine of some regions of central and northern Argentina as a diuretic, emmenagogue, stomachic, and nervine agent (1). Previous chemical studies on the essential oil of this abundant species revealed the presence of sesquiterpenes with uncommon carbon skeletons (2-7). These facts encouraged us to explore further its trace constituents, whereby three new substances (1-3) were found, together with the known sesquiterpene (S)-(+)-trans-nerolidol (8,9). Although IUPAC names are given in some parts of this paper, the discussion uses conventional numbering for the natural products, as represented in 1-3.

The structure of compound **1** was determined from its ¹H- and ¹³C-nmr data (Tables 1 and 2) in C₆D₆ and CDCl₃. The ¹H-nmr spectrum in CDCl₃ showed signals for the CH₃(15)-CH(4)-CH₂(3)-C(2)=O fragment. The coupling constants $J_{36,4}$ and $J_{38,4}$ showed values of 2.3

and 6.7 Hz, respectively, which are typical of cyclopentenones (10). Furthermore, the same spectrum showed a spin-spin system very similar to that found in lippifoli-1(16)-en-5-one (4) for the $CH_2(8)-CH(9)-C(10)-CH_2(11)$ fragment. This system was confirmed by spin simulation (11). In addition, the ¹³C-nmr spectrum of 1 (Table 2), assigned from a partially coupled spectrum (7) and from a HETCOR experiment, showed a large chemical shift difference for the quaternary carbon bearing the gem-dimethyl group C-7 (47.0 ppm) as compared to lippifoli-1(16)-en-5-one(33.5 ppm)(12). This is due to the presence of the carbonyl group at C-6 in 1. The uv spectrum showed a λ max at 257 nm, characteristic of a O=C-C=C-C=O moiety and the ir spectrum exhibited the corresponding bands at 1712, 1671, and 1650 cm⁻¹. The eims showed a $[M]^+$ at m/z 232 in agreement with a molecular formula of $C_{15}H_{20}O_2$. The stereochemistry of **1**, identical to substances isolated previously from the same species (2-7), was sup-

	Compound								
Proton	1		3		5	Δ(5–3)			
	C_6D_6	CDCl,	C_6D_6	CDCl ₃	CDCl ₃	CDCl,			
Η-2α	_	_	1.39–1.54 m	1.91 br dd	3.00 br dd	1.09			
Η-2β	_	_	1.39–1.54 m	1.74 m	1.95 m	0.21			
Η-3α	1.63 dd	2.06 dd	1.39-1.54 m	1.74 m	1.39 m	-0.35			
Η-3β	2.18 dd	2.71 dd	1.69–1.81 m	1.88 dddd	2.00 dddd	0.12			
H-4	3.07 ddq	3.35 ddg	1.89 m	2.37 br ddq	2.42 br ddq	0.05			
Н-6	_ `		2.01 br s	2.45 br s	2.41 br s	-0.04			
Η-8α	0.94 br dd	1.24 br dd	1.59 dd	1.77 dd	1.86 br dd	0.09			
Н-8β	1.60 dd	2.02 dd	1.91 br dd	2.11 br dd	2.11 br dd	0.00			
н-9	0.68 dddd	1.06 dddd	5.54 tsext.	5.71 tsext.	5.68 m	-0.03			
H-11α.	0.39 t	0.51 t	1.86 dd	2.13 dd	3.09 dd	0.96			
H-11β.	0.77 dd	0.95 dd	2.45 br dd	2.80 br dd	2.85 br dd	0.05			
Me- 12 .	0.88 s	1.06 s	1.49 s	1.35 s	1.29 s	-0.06			
Me- 13 .	1.21 s	1.35 s	1.03 s	0.98 s	1.00 s	0.02			
Me-14 .	1.14 s	1.20 s	1.67 td	1.80 td	1.75 td	-0.05			
Me-15 .	0.66 d	1.04 d	1.02 d	0.99 d	1.00 d	0.01			

TABLE 1. ¹H-Nmr Data of Compounds 1, 3, and 5.^{*}

^aMeasured at 300 MHz in ppm from TMS as the internal reference. J (Hz) for compound **1**: $J_{3\alpha,3\beta} = 19.0$, $J_{3\alpha,4} = 2.4$, $J_{3\beta,4} = 6.8$, $J_{4,15} = 7.1$, $J_{8\alpha,8\beta} = 14.8$, $J_{8\alpha,9} = 10.9$, $J_{8\beta,9} = 5.2$, $J_{9,11\alpha} = 4.5$, $J_{9,11\beta} = 4.4$. For compound **3** and **5** $J_{2\alpha,2\beta} = 14.3$, $J_{2\alpha,3\alpha} = 4.4$, $J_{2\alpha,3\beta} = 2.0$, $J_{2\beta,3\beta} = 5.1$, $J_{3\alpha,3\beta} = 11.0$, $J_{3\alpha,4} = 13.0$, $J_{3\beta,4} = 5.5$, $J_{4,15} = 6.0$, $J_{8\alpha,8\beta} = 14.2$, $J_{8\alpha,9} = 8.3$, $J_{8\beta,9} = 6.4$, $J_{9,11\beta} = 1.7$, $J_{9,11\alpha} = 1.7$, $J_{9,14} = 1.7$, $J_{11\alpha,11\beta} = 14.2$

ported by a NOESY experiment carried out in C_6D_6 in which correlations between H-3 α and H-11 α , H-3 α and Me-12, H-11 α and Me-15, Me-12 and Me13, and Me-12 and Me-15 were observed. The eims of compound 2 showed a $[M-18]^+$ at m/z 204. The structure was deduced from the combined evaluation

	Compound						
Carbon		L	2		3		
	C_6D_6	CDCl ₃	C_6D_6	CDCl ₃	C ₆ D ₆		
C-1	166.4 s	167.6 s	44.2 t	43.9 t	78.5 s		
C-2 C-3	210.0 s 43.1 t	211.4 s 43.3 t	51.1 d 74.1 s	74.7 s	42.0 t 31.6 t		
C-4	32.8 d 147.4 s	32.8 d 147.3 s	42.7 t 25.0 t	42.2 t 24.5 t	46.3 d 210.6 s		
C-6	207.1 s 46.8 s	209.2 s 47.0 s	125.8 d 133.4 s	125.1 d 133.8 s	69.1 d 30.2 s		
C-8	41.2 t	41.2 t	34.4 t	34.2 t	$43.6 t^{b}$		
C-10	20.2 a 16.8 s	16.4 s	50.1 t	49.8 t	135.8 s		
C-11 C-12	22.1 t 27.9 q	21.5 t 27.9 q	33.7 s 23.9 q	33./s 23.8 q	47.5 t 32.6 q		
C-13 C-14	23.7 q 23.7 q	23.7 q⁵ 23.6 q⁵	27.9 q 31.9 q	27.6 q 31.8 q	26.3 q 22.8 q		
C-15	19.0 q	19.2 q	31.9 q	31.8 q	15.1 q		

TABLE 2. ¹³C-Nmr Chemical Shifts and Multiplicities of Compounds 1-3.^a

^aMeasured at 75.4 MHz in ppm from TMS as the internal reference. ^bAssignments may be interchanged. of ¹H-nmr (Table 3), COSY, HETCOR, and FLOCK (13) experiments. The COSY diagram allowed the location of the molecular segments constituted by protonated carbons C-1-C-2-C-9-C-8-C-10 and C-4-C-5-C-6, and the FLOCK diagram (C-H long range couplings) completed the structure by showing strong correlations between C-1 and H-14, C-1 and H-15, C-10 and H-14, C-10 and H-15, and C-3 and H-4. In addition, irradiation of the vinylic proton at C-6 confirmed the four-bond coupling between this proton and H-8 α . These data, in combination with the ¹³C-nmr chemical shifts (Table 2) were consistent with a molecule having the 2,6,10,10tetramethylbicyclo[6.3.0]undecane skeleton, which has been named asteriscane (14). The relative stereochemistry at C-2 and C-9 in 2 is cis from a comparison of the coupling constant value between H-2 and H-9 (11.0 Hz) with that of

TABLE 3. ¹H-Nmr Data of Compound **2**.^{*}

	2			
Proton	C ₆ D ₆	CDCl,		
$\begin{array}{c} H-1\alpha \\ H-1\beta \\ H-2 \\ H-4\alpha \\ H-4\beta \\ H-5\alpha \\ H-5\beta \\ H-6 \\ H-8\beta \\ H-8\beta \\ H-8\beta \\ H-9 \\ H-10\alpha \\ \end{array}$	C ₆ D ₆ 1.35 dd 1.63 dd 2.06 ddd 1.90 ddd 1.49 br ddd 1.97 m 2.22 m 5.39 dddq 2.31 br dd 1.80 dd 1.70 m 1.24 t	CDCl ₃ 1.40 dd 1.62 dd 2.09 ddd 2.02 ddd 1.58 br ddd 2.06 m 2.27 m 5.42 dddq 2.40 br dd 1.91 dd 1.86 m 1.28 t		
Η-10β	1.43 dd	1.55 dd		
Me-12	1.02 s 1.70 q	1.14 s 1.72 q		
Me-14	1.01 s ⁵ 1.00 s ^b	1.01 s ^b 1.02 s ^b		

*Measured at 300 MHz in ppm from TMS as the internal reference. J (Hz): $J_{1\alpha,1\beta}=12.7$, $J_{1\alpha,2}=12.0$, $J_{1\beta,2}=7.3$, $J_{2,3}=11.0$, $J_{4\alpha,4\beta}=14.3$, $J_{4\alpha,5\alpha} = 2.7, J_{4\alpha,5\beta} = 12.0, J_{4\beta,5\alpha} = 7.2, J_{4\beta,5\beta} = 3.2,$ $J_{5\alpha,6}=7.3, J_{5\beta,6}=5.9, J_{5\alpha,13}=1.3, J_{5\beta,13}=1.3,$ $J_{6,8\alpha} = 1.3, \ J_{6,13} = 1.3, \ J_{8\alpha,8\beta} = 14.0 \ J_{8\alpha,9} = 5.1,$ $J_{8\beta,9} = 4.9, J_{9,10\alpha} = 12.3, J_{9,10\beta} = 6.8, J_{10\alpha,10\beta} = 12.0.$

^bAssignments may be interchanged.

asteriscanolide $(J_{2,9}=11.4 \text{ Hz})$, which has been studied by X-ray diffraction (14). The C-3 epimer of 2, obtained as an intermediate of a biomimetic sequence for the transformation of humulene into 7-protoilludyl cation derivatives (15). turned out to be helpful in establishing the stereochemistry of 2 at C-3. Thus, molecular modelling calculations (6,7,16) of 2 and its C-3 epimer, together with the analysis of the vicinal coupling constants of 2 by means of a Karplus-type equation (17,18), revealed that the eight-membered rings of both substances adopt a conformation close to a chair $C_s(19)$. The methyl group at C-3 in 2 remains pseudoaxial, while in the C-3 epimer, it remains pseudo-equatorial. Thes results are consistent with the observed chemical shifts of these methyl groups as measured in CCl_4 (2, 1.06 ppm vs. its C-3 epimer, 1.15 ppm), and therefore with the stereochemistry at C-3 for both substances.

The eims of compound 3 showed a $[M-18]^+$ fragment peak at m/z 218. The ¹H-nmr spectrum (Table 1) in CDCl₃ showed signals for a vinylic proton at 5.71 ppm (H-9) as a triple sextet and a vinylic methyl group at 1.80 ppm (Me-14) as a triple doublet. These signals indicated the presence of a $CH_2(11)$ - $C(10)(CH_3) = CH(9) - CH_2(8)$ fragment. Furthermore, the signals for both methylene groups (H-8 α , H-8 β , H-11 α , and H-11 β), assigned by double-resonance experiments, showed no additional vicinal couplings, except for one of the protons of the methylene group attached to the vinylic methyne (H-8 β), which showed a long-range coupling with the signal of Me-12. Therefore, the fragment C(1)-CH₂(11)corresponded to $C(10)(CH_3) = CH(9) - CH_2(8) - C(7)(CH_3)_2$ The signals for the CH₃(15)-CH(4)- $CH_2(3)$ - $CH_2(2)$ -C(1) fragment could be recognized easily in the ¹H-nmr spectrum measured in C_6D_6 . The signal for H-4 showed the same multiplicity and coupling constant values as in the previously described analogue 4 (7). Furthermore, a long-range coupling constant between H-4 and H-6, through the C-5 carbonyl group, was also observed, as was the case for 4 (7). The ¹³C-nmr spectrum of 3 (Table 2) was also in agreement with the proposed structure.

The relative stereochemistry of 3 was deduced when its ¹H-nmr data were compared with those of derivative 5 (Table 1), obtained by addition of a drop of trichloroacetyl isocyanate to a CDCl₃ solution of **3**. It is known (20) that when the derivative is formed, the signals attributable to protons vicinal to hydroxyl groups experience large shifts ($\Delta \delta 0.2 - 1.2 \text{ ppm}$) when they are syn to the oxygen atom and small shifts ($\Delta\delta$ 0.0–0.2 ppm) when they are anti. The values found in this case for the α -protons (Table 1) revealed a trans relationship between the oxygen atom at C-1 and the hydrogen atom at C-6. The coupling constants of H-3a with H-4 (13.0 Hz) and H-3 β with H-4 (5.5 Hz) indicated the axial orientation of H-4. Therefore, assuming a chair conformation for the six-membered ring, the methyl group at C-4 has an equatorial orientation and it is cis with respect to the oxygen atom at C-1. In the substances previously isolated from L. integrifolia (2-7), the humulene pattern can be recognized easily, but in the natural product 3 it seems that its biogenesis may involve a methyl migration from C-11 to C-10, as has been observed in some related sesquiterpenes, in which a cyclopropane ring is present at some point of the biogenetic pathway (21). Alternatively, the rearrangement may occur via a non-classical carbonium ion involving C-1, C-9, C-10, and C-11.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Hplc separations were performed on Waters equipment (M45 pump, U6K injector with 2-ml loop and R-401 differential refractometer), using (a) a Beckman ODS column (5 μ m, 10×250 mm) and (b) a Maxsil Phenomenex 10C₈ column (10×500 mm). Retention times were measured from the injection solvent peak. The 300 MHz ¹H-nmr spectra were measured on a Varian Associates XL-300GS spectrometer from solutions containing TMS as the internal reference and the 90 MHz ¹H-nmr spectrum of **2** was measured on a Varian Associates EM-390 spectrometer in CCl₄ solutions. ¹³C-Nmr spectra were determined with a Varian Associates XL-300GS spectrometer. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and mass spectra were obtained at 70 eV on a Hewlett Packard HP-5988A spectrometer. Mps are reported uncorrected. Ir spectra were recorded on a Perkin-Elmer 16 FPC Ft spectrophotometer.

PLANT MATERIAL.—As reported previously (6,7).

EXTRACTION AND ISOLATION.—Aerial parts of *L. integrifolia* were processed and chromatographed as described previously (6,7). A portion of fractions 62–67 (260 mg) was processed by hplc using column (b), eluting with MeOH-H₂O (2:1) at 2 ml/min. A peak at *R*, 12.5 min was collected and purified by rechromatography on the same column to afford **1** (12.7 mg). A peak at *R*, 17.1 min was collected and rechromatographed on column (a) to afford **3** (3.2 mg) at 27.5 min. Peaks at 44 and 55 min were purified by rechromatography on column a to yield **2** (8.7 mg) and *S*-(+)-trans-nerolidol (13.4 mg), respectively.

 $2\beta, 4\beta, 9\alpha-2, 6, 6, 9$ -*Tetramethyltricy-clo*[6.3.0.0²⁴]*undec*-1(8)-en-7,11-dione [1].—Colorless oil; $[\alpha]_{599}$ +127°, $[\alpha]_{578}$ +134°, $[\alpha]_{546}$ +159°, $[\alpha]_{436}$ +345°, $[\alpha]_{365}$ +1071° (*c*=0.69, CHCl₃); ir (film) ν max 3060, 1712, 1671, 1650, 1455, 1380, 1235, 1145, 1036 cm⁻¹; uv (MeOH), λ max (log ϵ) 257 nm (4.08); cims (CH₄) *m/z* [M+H]⁺ 233 (100), 205 (24), 191 (13), 177 (12), 161 (9), 148 (13), 135 (16), 111 (19); eims *m/z* [M]⁺ 232 (26), 204 (8), 191 (16), 161 (67), 148 (100), 133 (32), 106 (43), 91 (40), 77 (42); ¹H-nmr data, see Table 1; ¹³C-nmr data, see Table 2.

 $1\beta, 2\alpha, 8\beta-2, 6, 10, 10$ -Tetramethylbicyclo[6.3.0]undec-5-en-2-ol[2].—Colorless oil; $[\alpha]_{589}$ +5°, $[\alpha]_{578}$ +6°, $[\alpha]_{546}$ +7°, $[\alpha]_{436}$ +11°, $[\alpha]_{365}$ +14° (c=1.84, CHCl₂); ir (film) ν max 3400, 1645, 1465, 1380, 1372, 1112 cm⁻¹; eins m/z [M-H₂O]⁺ 204 (18), 189 (8), 139 (57), 121 (12), 95 (22), 81 (24), 55 (26); ¹H nmr (300 MHz, CDCl₃ and C₆D₆), see Table 3; ¹H nmr (90 MHz, CDCl₃ and C₆D₆), see Table 3; ¹H nmr (90 MHz, CCl₄) δ 5.43 (1H, m, H-6), 1.72 (3H, br s, Me-13), 1.06 (3H, s, Me-12), 1.00 ppm (6H, Me-14 and Me-15); ¹³C-nmr data, see Table 2.

1α, 7β, 9α-1-Hydroxy-3, 6, 6, 9-tetramethylbicyclo[5.4.0]undec-3-en-8-one [**3**].—White solid; mp 56–59°; [α]₅₈₉ –25°, [α]₅₇₈ –25°, [α]₅₄₆ –28°, [α]₄₃₆ –49°, [α]₃₆₅ –74° (c=0.29, CHCl₃); ir (CHCl₃), ν max 3592, 3420, 3032, 1712, 1456, 1378, 1240 cm⁻¹; eims m/z [M-H₂O]⁺ 218 (3), 167 (18), 139 (11), 127 (25), 110 (100) 83 (57), 55 (38); ¹H-nmr data, see Table 1; ¹³C-nmr data, see Table 2.

S-(+)-trans-Nerolidol.—Colorless oil; $[\alpha]_{589}$

+13° (c=1.0, CHCl₃), lit. (9) [α]₅₈₉ +15.5°. The ¹³C-nmr data of this substance were identical to those reported (8).

ACKNOWLEDGMENTS

Work in Tucumán was supported by grants from Consejo Nacional de Investigación Científica y Técnica de la República Argentina and Consejo de Investigaciones de la Universidad de Tucumán. Partial financial support from CoNaCyT, México and from CYTED, Spain is acknowledged.

LITERATURE CITED

- M. Toursarkissian, "Plantas Medicinales de la Argentina," Editorial Hemisferio Sur, Buenos Aires, 1980, p. 135.
- C.A.N. Catalán, D.I. Iglesias, J.A. Retamar, J.B. Iturraspe, G.H. Dartayet, and E.G. Gros, *Phytochemistry*, **22**, 1507 (1983).
- G.H. Dartayet, C.A. Catalán, J.A. Retamar, and E.G. Gros, *Phytochemistry*, 23, 688 (1984).
- C.A.N. Catalán, I.J.S. de Fenik, G.H. Dartayet, and E.G. Gros, *Phytochemistry*, 30, 1323 (1991).
- C.A.N. Catalán, I.J.S. de Fenik, P.J. de Arriazu, and W.C.M.C. Kokke, *Phytochemistry*, **31**, 4025 (1992).
- C.A.N. Catalán, M.E.P. de Lampasona, I.J.S. de Fenik, C.M. Cerda-García-Rojas, and P. Joseph-Nathan, J. Nat. Prod., 56, 381 (1993).
- C.A.N. Catalán, M.E.P. de Lampasona, I.J.S. de Fenik, C.M. Cerda-García-Rojas, Y. Mora-Pérez, and P. Joseph-Nathan, *J. Nat. Prod.*, 57, 206 (1994).
- D.E. Cane, R. Iyengar, and M.S. Shiao, J. Am. Chem. Soc., 103, 914 (1981).

- P. Vlad and M. Soucek, Coll. Czech. Chem. Commun., 27, 1726 (1962).
- W. Brügel, "Handbook of Nmr Spectral Parameters," Heyden and Son, Ltd., London, 1979, p. 236.
- A.A. Bothner-by and S.M. Castellano, in: "Computer Programs for Chemistry." Ed. by D.F. Detar and W.A. Benjamin, New York, 1968, Vol. 1, Chapter 3, pp. 10–53.
- C.A.N. Catalán, I.J.S. de Fenik, C.M. Cerda-García-Rojas, Y. Mora-Pérez, and P. Joseph-Nathan, Spectroscopy, 11, 1 (1993).
- W.F. Reynolds, S. McLean, M. Perpick-Dumont, and R.G. Enríquez, Magn. Reson. Chem., 27, 162 (1989).
- A. San Feliciano, A.F. Barrero, M. Medarde, J.M. Miguel del Corral, A. Aramburu, A. Perales, and J. Fayos, *Tetrahedron Lett.*, 26, 2369 (1985).
- S. Misumi, T. Ohtsuka, Y. Ohfune, K. Sugita, H. Shirahama, and T. Matsumoto, *Tetrahedron Lett.*, 31 (1979).
- C.M. Cerda-García-Rojas, R.E. del Río, P. Joseph-Nathan, L.U. Román, and J.D. Hernández, J. Nat. Prod., 57, 369 (1994).
- 17. C.A.G. Haasnoot, F.A.A.M. de Leeuw, and C. Altona, *Tetrahedron*, **36**, 2783 (1980).
- C.M. Cerda-García-Rojas, L.G. Zepeda, and P. Joseph-Nathan, *Tetrahedron Comp. Methodol.*, 3, 113 (1990).
- G. Favini, C. Rubino, and R. Todeschini, J. Mol. Struct., 41, 305 (1977).
- Z. Samek and M. Budešínský, Coll. Czech. Chem. Commun., 44, 558 (1979).
- S. Caccamese, V. Amico, P. Neri, and M. Foti, *Tetrabedron*, 47, 10101 (1991).

Received 8 September 1994